

SERIGAS<sup>™</sup> TECHNOLOGY

Wasted Mass to Clean Energy

### **Energy from Waste**

Not only in times of increasing urbanisation and population or of the growing industrialisation of countries becomes waste treatment more and more demanding. Each year thousands of acres of land are lost to landfills. The methane produced from decomposing waste is a potent greenhouse gas. And the costs associated with using a landfill are rising as cities and countries truck their waste ever farther away.

Reasons like these, and others, are causing municipalities to re-evaluate the benefits of waste to energy facilities.

Additionally, more and more governments establish subsidiaries for an ecological friendly waste treatment.

Waste to Energy is often viewed as primarily a waste management solution rather than a valuable energy resource. Consequently, its full potential has not been realised.

Waste to Energy plants across the world follow the conventional biomethanation process which is still highly cost intensive, subject to frequent breakdowns and bacteria washouts.

An efficient and reliable technology is the key to harnessing energy from waste and provides many benefits.



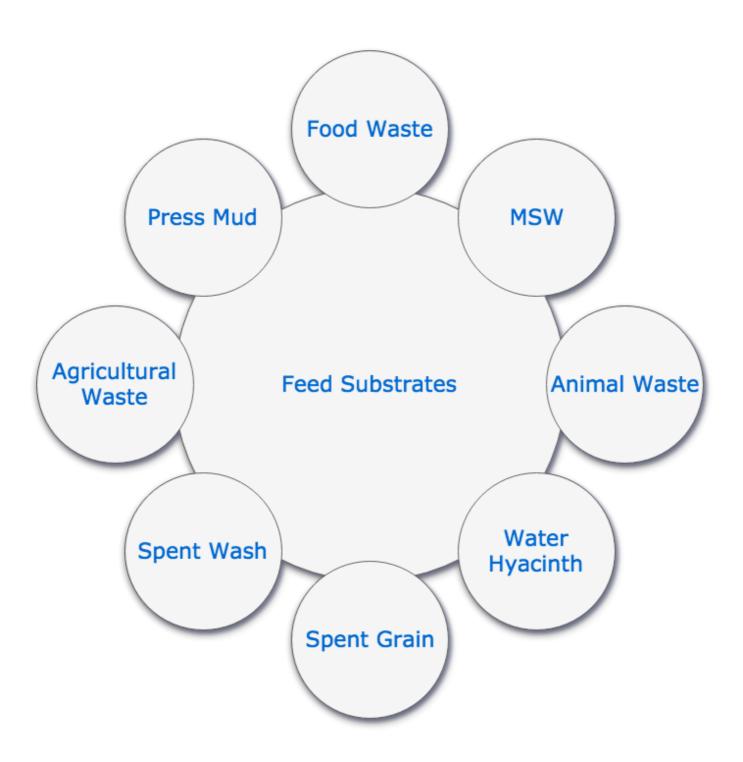
### SERIGAS<sup>™</sup> Technology

The first of it's kind in the World, and the result of over 8 years of R&D. It has been designed to process any organic feedstock including food waste, non consumable parts of fruits, vegetables and other agricultural waste, municipal solid waste, oil effluents, parts of non consumable meat and fish, excreta of humans and animals, weeds such as water hyacinth, water lettuce parthenium, etc that clog our water bodies or cause allergies, rot when they die, pushing tons of harmful substances into the environment.

Serigas<sup>TM</sup> Technology is a highly controlled biological reaction comprising the use of specifically and finely cultured microbial ecosystem for aerobic and anaerobic digestion of organic feedstock. It is a multi stage, variable hydraulic retention, microbe incubated bio reaction system. The process aids in production of high purity combustible gas in quantities exceeding 30 - 60% more than the currently used techniques.

The design of the system is fully modular with scope for expansion and the plant can be built with small footprint. The cost of such a plant is substantially lower and affordable; outcomes are encouraging and gives you a sense of saving the planet.

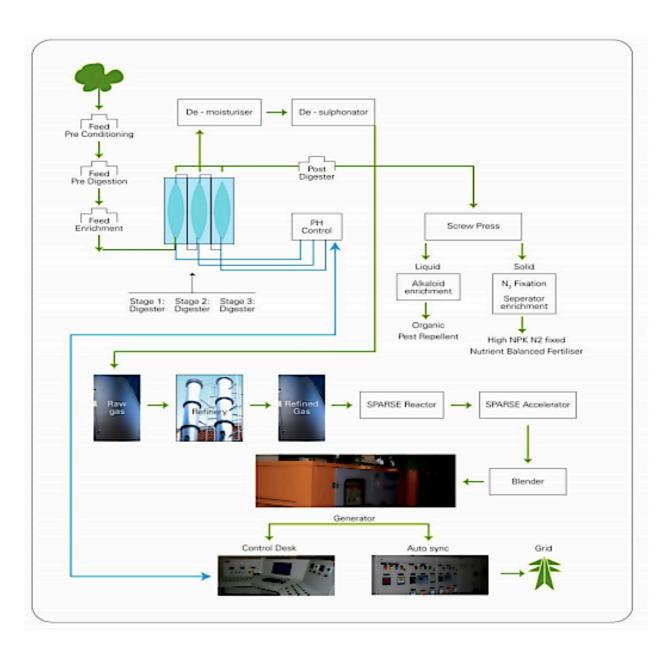
The output gas is named as SERIGAS™. It has similar properties as that of Natural Gas without the undesirable impurities like Butane, Propane, Pentane, etc.


SERIGAS is combustible, has many applications and have the following properties:

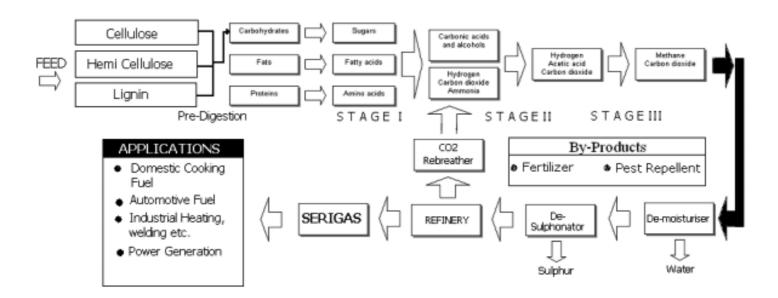
| Particulars                | Unit              | Value         |  |
|----------------------------|-------------------|---------------|--|
| Calorific Value            | MJ/M³             | 36.19         |  |
| Density                    | Kg/m³             | 0.84          |  |
| Wobble Index               | MJ/M <sup>3</sup> | 40.00         |  |
| Max. Ignition Velocity     | M/sec             | 0.398         |  |
| Combustion Air Requirement | M³ air/ M³ gas    | 9.60          |  |
| Max. CO₂ in Stack Gas      | Vol %             | 9.9           |  |
| Ignition Temperature       | °C                | 648.89        |  |
| Flammability Limits        | % Gas to % Air    | 5 to15        |  |
| <b>Buoyant Temperature</b> | °C                | -71           |  |
| Dew Point                  | °C                | 58.65         |  |
| Toxicity                   |                   | Non Toxic     |  |
| Corrosion                  |                   | Non corrosive |  |
| Ground Water Contamination |                   | None          |  |

### **SERI Innovations**

MIB - reactors, BioWheels 30 - 40% More Gas Low H<sub>2</sub>S CO<sub>2</sub> Rebreather Feed Dependant Microbium **Additional Feed Substrates** Fluid Ignition Technology SPARSE Reactor - Fuel **Low Engine Costs Double Power Production** Enrichment BioScada, Process **Low Operation Cost** Automation, Remote Access Reduced Downtime **Optimal Plant Performance** and Monitoring

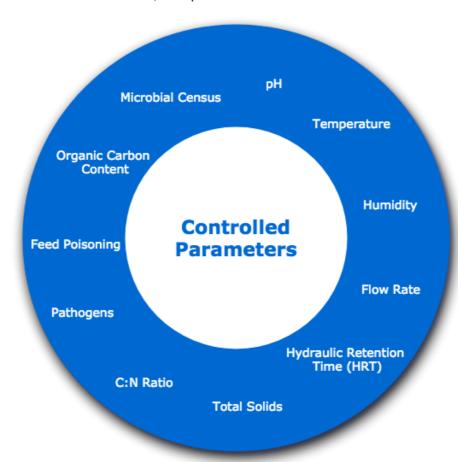

## Feed Substrates




### Composition of SERIGAS™

| GAS               | Formula         | Percentage V/V |  |
|-------------------|-----------------|----------------|--|
| Methane           | CH <sub>4</sub> | 98             |  |
| Carbon Dioxide    | CO <sub>2</sub> | 1              |  |
| Nitrogen          | $N_2$           | 0.06           |  |
| Hydrogen          | H <sub>2</sub>  | 0.7            |  |
| Hydrogen Sulphide | H₂S             | 0.003          |  |
| Oxygen            | O <sub>2</sub>  | 0.23           |  |

### The Process:




### Process:



#### Parametric Controls:

Computerised controlling of key parameters is most important in the SERIGAS reaction process to maximise the performance of the plant. Except for providing the feed at the pre-digester, all process is human independent. The following parameters are monitored constantly with necessary corrective measures for each of them, if required.



## The Plant:



# **Applications:**

#### **Domestic Cooking Fuel:**



**NPMC Domestic Cylinders** 



**Domestic Piped Biothane Gas (PONG)** 

#### **Automotive Fuel:**





#### **Power Generation:**









#### **Industrial Applications:**

Waste Treatment, Incineration, Heating, Drying and Dehumidification, Glass Melting, Food Processing and feeling Industrial Boilers. SERIGAS may also be used as a feedstock for the manufacturing of a number of chemicals and products.

# **Project Portfolio:**

| SI No | Client                                                          | Capacity/ Feed                              | Output                                             | Status                               |
|-------|-----------------------------------------------------------------|---------------------------------------------|----------------------------------------------------|--------------------------------------|
| 1     | KBDL (UB Group),<br>Bengaluru, India                            | 30 ton per day/<br>Brewery spent<br>grain   | Electricity                                        | Operational from<br>last three years |
| 2     | Boon firms, Netherlands.                                        | 25 ton per day/<br>Cow manure.              | Gas for<br>Automobile,<br>electricity &<br>heating | Operational from<br>last 2 years     |
| 3     | Bombay Burmah Trading<br>Corporation, Karnataka,<br>India.      | 125 ton per day/<br>coffee fruit skin       | Heating and power generation                       | Operational from 2014                |
| 4     | Volvo India Limited,<br>Bengaluru.                              | 500 Kg per day/<br>Food & Kitchen<br>waste  | Gas for heating and cooking                        | Operational from 2014                |
| 5     | Komarla Hatcheries,<br>Bengaluru.                               | 500 Kg per day/<br>chicken litter           | Gas for heating                                    | Operational from 2013                |
| 6     | Dharan Municipal<br>Corporation, Nepal. (World<br>Bank Project) | 50 ton per day/<br>Municipal Solid<br>Waste | Gas for<br>transportation &<br>cooking             | Project delivery<br>January 2019     |



Biotechnology • Nanoscience • Medical Devices • Hydrocarbons • Oil & Gas • Waste & Water Management

#### **ESCLARE DISTRIBUTORS PRIVATE LIMITED**

106, Arihant Avenue, Wanowrie, Pune - 411040, Maharashtra, India info@esclare.org

Contact: 0888 808 5550